Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Function (Oxf) ; 5(1): zqad060, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38020068

RESUMO

N-type calcium channels (CaV2.2) are predominantly localized in presynaptic terminals, and are particularly important for pain transmission in the spinal cord. Furthermore, they have multiple isoforms, conferred by alternatively spliced or cassette exons, which are differentially expressed. Here, we have examined alternatively spliced exon47 variants that encode a long or short C-terminus in human CaV2.2. In the Ensembl database, all short exon47-containing transcripts were associated with the absence of exon18a, therefore, we also examined the effect of inclusion or absence of exon18a, combinatorially with the exon47 splice variants. We found that long exon47, only in the additional presence of exon18a, results in CaV2.2 currents that have a 3.6-fold greater maximum conductance than the other three combinations. In contrast, cell-surface expression of CaV2.2 in both tsA-201 cells and hippocampal neurons is increased ∼4-fold by long exon47, relative to short exon47, in either the presence or the absence of exon18a. This surprising discrepancy between trafficking and function indicates that cell-surface expression is enhanced by long exon47, independently of exon18a. However, in the presence of long exon47, exon18a mediates an additional permissive effect on CaV2.2 gating. We also investigated the single-nucleotide polymorphism in exon47 that has been linked to schizophrenia and Parkinson's disease, which we found is only non-synonymous in the short exon47 C-terminal isoform, resulting in two minor alleles. This study highlights the importance of investigating the combinatorial effects of exon inclusion, rather than each in isolation, in order to increase our understanding of calcium channel function.


Assuntos
Neurônios , Splicing de RNA , Humanos , Neurônios/metabolismo , Canais de Cálcio Tipo N/genética , Isoformas de Proteínas/genética , Éxons/genética
2.
Channels (Austin) ; 17(1): 2167563, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36735378

RESUMO

In this hybrid review, we have first collected and reviewed available information on the structure and function of the enigmatic cache domains in α2δ proteins. These are organized into two double cache (dCache_1) domains, and they are present in all α2δ proteins. We have also included new data on the key function of these domains with respect to amino acid and gabapentinoid binding to the universal amino acid-binding pocket, which is present in α2δ-1 and α2δ-2. We have now identified the reason why α2δ-3 and α2δ-4 do not bind gabapentinoid drugs or amino acids with bulky side chains. In relation to this, we have determined that the bulky amino acids Tryptophan and Phenylalanine prevent gabapentin from inhibiting cell surface trafficking of α2δ-1. Together, these novel data shed further light on the importance of the cache domains in α2δ proteins.


Assuntos
Aminas , Canais de Cálcio , Canais de Cálcio/metabolismo , Gabapentina/metabolismo , Aminas/metabolismo , Aminas/farmacologia , Membrana Celular/metabolismo
3.
Function (Oxf) ; 3(3): zqac013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462614

RESUMO

The auxiliary α2δ subunits of voltage-gated calcium (CaV) channels are key to augmenting expression and function of CaV1 and CaV2 channels, and are also important drug targets in several therapeutic areas, including neuropathic pain. The α2δ proteins are translated as preproteins encoding both α2 and δ, and post-translationally proteolyzed into α2 and δ subunits, which remain associated as a complex. In this study, we have identified ADAM17 as a key protease involved in proteolytic processing of pro-α2δ-1 and α2δ-3 subunits. We provide three lines of evidence: First, proteolytic cleavage is inhibited by chemical inhibitors of particular metalloproteases, including ADAM17. Second, proteolytic cleavage of both α2δ-1 and α2δ-3 is markedly reduced in cell lines by knockout of ADAM17 but not ADAM10. Third, proteolytic cleavage is reduced by the N-terminal active domain of TIMP-3 (N-TIMP-3), which selectively inhibits ADAM17. We have found previously that proteolytic cleavage into mature α2δ is essential for the enhancement of CaV function, and in agreement, knockout of ADAM17 inhibited the ability of α2δ-1 to enhance both CaV2.2 and CaV1.2 calcium currents. Finally, our data also indicate that the main site of proteolytic cleavage of α2δ-1 is the Golgi apparatus, although cleavage may also occur at the plasma membrane. Thus, our study identifies ADAM17 as a key protease required for proteolytic maturation of α2δ-1 and α2δ-3, and thus a potential drug target in neuropathic pain.


Assuntos
Neuralgia , Inibidor Tecidual de Metaloproteinase-3 , Humanos , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Canais de Cálcio Tipo N/genética , Proteólise , Cálcio da Dieta/metabolismo , Peptídeo Hidrolases/metabolismo , Proteína ADAM17/genética
4.
Brain ; 145(8): 2721-2729, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35293990

RESUMO

Voltage-gated calcium (CaV) channels form three subfamilies (CaV1-3). The CaV1 and CaV2 channels are heteromeric, consisting of an α1 pore-forming subunit, associated with auxiliary CaVß and α2δ subunits. The α2δ subunits are encoded in mammals by four genes, CACNA2D1-4. They play important roles in trafficking and function of the CaV channel complexes. Here we report biallelic variants in CACNA2D1, encoding the α2δ-1 protein, in two unrelated individuals showing a developmental and epileptic encephalopathy. Patient 1 has a homozygous frameshift variant c.818_821dup/p.(Ser275Asnfs*13) resulting in nonsense-mediated mRNA decay of the CACNA2D1 transcripts, and absence of α2δ-1 protein detected in patient-derived fibroblasts. Patient 2 is compound heterozygous for an early frameshift variant c.13_23dup/p.(Leu9Alafs*5), highly probably representing a null allele and a missense variant c.626G>A/p.(Gly209Asp). Our functional studies show that this amino-acid change severely impairs the function of α2δ-1 as a calcium channel subunit, with strongly reduced trafficking of α2δ-1G209D to the cell surface and a complete inability of α2δ-1G209D to increase the trafficking and function of CaV2 channels. Thus, biallelic loss-of-function variants in CACNA2D1 underlie the severe neurodevelopmental disorder in these two patients. Our results demonstrate the critical importance and non-interchangeability of α2δ-1 and other α2δ proteins for normal human neuronal development.


Assuntos
Canais de Cálcio Tipo N , Epilepsia , Idade de Início , Animais , Cálcio , Canais de Cálcio , Canais de Cálcio Tipo L , Membrana Celular , Humanos , Mamíferos , Neurônios
5.
Cell Rep ; 29(1): 22-33.e5, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577951

RESUMO

Voltage-gated calcium channels are exquisitely Ca2+ selective, conferred primarily by four conserved pore-loop glutamate residues contributing to the selectivity filter. There has been little previous work directly measuring whether the trafficking of calcium channels requires their ability to bind Ca2+ in the selectivity filter or to conduct Ca2+. Here, we examine trafficking of neuronal CaV2.1 and 2.2 channels with mutations in their selectivity filter and find reduced trafficking to the cell surface in cell lines. Furthermore, in hippocampal neurons, there is reduced trafficking to the somatic plasma membrane, into neurites, and to presynaptic terminals. However, the CaV2.2 selectivity filter mutants are still influenced by auxiliary α2δ subunits and, albeit to a reduced extent, by ß subunits, indicating the channels are not grossly misfolded. Our results indicate that Ca2+ binding in the pore of CaV2 channels may promote their correct trafficking, in combination with auxiliary subunits. Furthermore, physiological studies utilizing selectivity filter mutant CaV channels should be interpreted with caution.


Assuntos
Sítios de Ligação/fisiologia , Canais de Cálcio Tipo N/metabolismo , Cálcio/metabolismo , Neurônios/metabolismo , Transporte Proteico/fisiologia , Animais , Linhagem Celular , Membrana Celular/metabolismo , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Neuritos/metabolismo , Ratos , Ratos Sprague-Dawley
6.
Cell Rep ; 25(6): 1610-1621.e5, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404013

RESUMO

Voltage-gated calcium channel auxiliary α2δ subunits are important for channel trafficking and function. Here, we compare the effects of α2δ-1 and an α2δ-like protein called Cachd1 on neuronal N-type (CaV2.2) channels, which are important in neurotransmission. Previous structural studies show the α2δ-1 VWA domain interacting with the first loop in CaV1.1 domain-I via its metal ion-dependent adhesion site (MIDAS) motif and additional Cache domain interactions. Cachd1 has a disrupted MIDAS motif. However, Cachd1 increases CaV2.2 currents substantially (although less than α2δ-1) and increases CaV2.2 cell surface expression by reducing endocytosis. Although the effects of α2δ-1 are abolished by mutation of Asp122 in CaV2.2 domain-I, which mediates interaction with its VWA domain, the Cachd1 responses are unaffected. Furthermore, Cachd1 co-immunoprecipitates with CaV2.2 and inhibits co-immunoprecipitation of α2δ-1 by CaV2.2. Cachd1 also competes with α2δ-1 for effects on trafficking. Thus, Cachd1 influences both CaV2.2 trafficking and function and can inhibit responses to α2δ-1.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Canais de Cálcio/metabolismo , Membrana Celular/metabolismo , Ativação do Canal Iônico , Proteínas de Membrana/metabolismo , Animais , Canais de Cálcio/genética , Canais de Cálcio Tipo N/genética , Hipocampo/metabolismo , Masculino , Mutação/genética , Neuritos/metabolismo , Ligação Proteica , Ratos Sprague-Dawley
7.
Neurobiol Dis ; 93: 243-56, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27260834

RESUMO

Episodic ataxia 2 (EA2) is an autosomal dominant disorder caused by mutations in the gene CACNA1A that encodes the pore-forming CaV2.1 calcium channel subunit. The majority of EA2 mutations reported so far are nonsense or deletion/insertion mutations predicted to form truncated proteins. Heterologous expression of wild-type CaV2.1, together with truncated constructs that mimic EA2 mutants, significantly suppressed wild-type calcium channel function, indicating that the truncated protein produces a dominant-negative effect (Jouvenceau et al., 2001; Page et al., 2004). A similar finding has been shown for CaV2.2 (Raghib et al., 2001). We show here that a highly conserved sequence in the cytoplasmic N-terminus is involved in this process, for both CaV2.1 and CaV2.2 channels. Additionally, we were able to interfere with the suppressive effect of an EA2 construct by mutating key N-terminal residues within it. We postulate that the N-terminus of the truncated channel plays an essential part in its interaction with the full-length CaV2.1, which prevents the correct folding of the wild-type channel. In agreement with this, we were able to disrupt the interaction between EA2 and the full length channel by co-expressing a free N-terminal peptide.


Assuntos
Ataxia/genética , Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo N/metabolismo , Nistagmo Patológico/genética , Animais , Células Cultivadas , Potenciais da Membrana/efeitos dos fármacos , Mutação/genética , Técnicas de Patch-Clamp/métodos , Coelhos , Ratos Sprague-Dawley
8.
Prog Neurobiol ; 134: 36-54, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26386135

RESUMO

This review summarises genetic studies in which calcium channel genes have been connected to the spectrum of neuropsychiatric syndromes, from bipolar disorder and schizophrenia to autism spectrum disorders and intellectual impairment. Among many other genes, striking numbers of the calcium channel gene superfamily have been implicated in the aetiology of these diseases by various DNA analysis techniques. We will discuss how these relate to the known monogenic disorders associated with point mutations in calcium channels. We will then examine the functional evidence for a causative link between these mutations or single nucleotide polymorphisms and the disease processes. A major challenge for the future will be to translate the expanding psychiatric genetic findings into altered physiological function, involvement in the wider pathology of the diseases, and what potential that provides for personalised and stratified treatment options for patients.


Assuntos
Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Animais , Humanos , Transtornos Mentais/tratamento farmacológico , Mutação , Doenças do Sistema Nervoso/tratamento farmacológico , Polimorfismo de Nucleotídeo Único
9.
Biochim Biophys Acta ; 1812(11): 1385-92, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21907281

RESUMO

In many cells, increase in intracellular calcium ([Ca(2+)](i)) activates a Ca(2+)-dependent chloride (Cl(-)) conductance (CaCC). CaCC is enhanced in cystic fibrosis (CF) epithelial cells lacking Cl(-) transport by the CF transmembrane conductance regulator (CFTR). Here, we show that in freshly isolated nasal epithelial cells of F508del-homozygous CF patients, expression of TMEM16A and bestrophin 1 was unchanged. However, calcium signaling was strongly enhanced after induction of expression of F508del-CFTR, which is unable to exit the endoplasmic reticulum (ER). Since receptor-mediated [Ca(2+)](i) increase is Cl(-) dependent, we suggested that F508del-CFTR may function as an ER chloride counter-ion channel for Ca(2+). This was confirmed by expression of the double mutant F508del/G551D-CFTR, which remained in the ER but had no effects on [Ca(2+)](i). Moreover, F508del-CFTR could serve as a scavenger for inositol-1,4,5-trisphosphate [IP3] receptor binding protein released with IP(3) (IRBIT). Our data may explain how ER-localized F508del-CFTR controls intracellular Ca(2+) signaling.


Assuntos
Cálcio/metabolismo , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Adenosil-Homocisteinase/metabolismo , Animais , Anoctamina-1 , Bestrofinas , Western Blotting , Sinalização do Cálcio , Células Cultivadas , Cricetinae , Fibrose Cística/genética , Fibrose Cística/patologia , Retículo Endoplasmático/metabolismo , Células Epiteliais/metabolismo , Proteínas do Olho/metabolismo , Imunofluorescência , Humanos , Imunoprecipitação , Rim/citologia , Rim/metabolismo , Proteínas de Membrana/metabolismo , Mucosa Nasal/metabolismo , Proteínas de Neoplasias/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Deleção de Sequência , Xenopus laevis/metabolismo
10.
Methods Mol Biol ; 742: 249-64, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21547737

RESUMO

As several genomes have been sequenced, post-genomic approaches like transcriptomics and proteomics, identifying gene products differentially expressed in association with a given pathology, have held promise both of understanding the pathways associated with the respective disease and as a fast track to therapy. Notwithstanding, these approaches cannot distinguish genes and proteins with mere secondary pathological association from those primarily involved in the basic defect(s). New global strategies and tools identifying gene products responsible for the basic cellular defect(s) in CF pathophysiology currently being performed are presented here. These include high-content screens to determine proteins affecting function and trafficking of CFTR and ENaC.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística/metabolismo , Canais Epiteliais de Sódio , Genômica/métodos , Linhagem Celular Tumoral , Fibrose Cística/genética , Fibrose Cística/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Bloqueadores do Canal de Sódio Epitelial , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Fluorescência , Inativação Gênica , Ensaios de Triagem em Larga Escala , Humanos , Microscopia Confocal , Mutação , Plasmídeos/metabolismo , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Deleção de Sequência , Espectrometria de Fluorescência , Transfecção
11.
Mol Membr Biol ; 28(1): 14-29, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21067452

RESUMO

Previous studies have implicated annexins in regulating ion channels and in particular annexin A5 (AnxA5) in the traffic of the cystic fibrosis transmembrane conductance regulator (CFTR). In the present study, we further investigated the role of AnxA5 in regulating CFTR function and intracellular trafficking in both Xenopus oocytes and mammalian cells. Although we could confirm the previously reported CFTR/AnnxA5 interaction, we found that in oocytes AnxA5 inhibits CFTR-mediated whole-cell membrane conductance presumably by a mechanism independent of PDZ-binding domain at the C-terminus of CFTR but protein kinase C (PKC)-dependent and results from either endocytosis activation and/or exocytosis block. In contrast, in human cells, co-expression of AnxA5 augmented CFTR whole-cell currents, an effect that was independent of CFTR PDZ-binding domain. We conclude that annexin A5 has multiple effects on CFTR, so that the net effect observed is cell system-dependent. Nevertheless, both effects observed here are consistent with the described role of annexins forming scaffolding platforms at cell membranes, thus contributing to a decrease in their dynamics. Finally, we could not confirm that AnxA5 overexpression rescues traffic/function of the most frequent disease-causing mutant F508del-CFTR, thus concluding that AnxA5 is not a promising tool for correction of the F508del-CFTR defect.


Assuntos
Anexina A5/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Anexina A5/biossíntese , Anexina A5/genética , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Endocitose , Exocitose , Células HEK293 , Células HeLa , Humanos , Oócitos/metabolismo , Domínios PDZ , Proteína Quinase C/metabolismo , Xenopus
12.
J Biol Chem ; 286(1): 707-16, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20940310

RESUMO

Voltage-dependent potassium (Kv) channels are tetramers of six transmembrane domain (S1-S6) proteins. Crystallographic data demonstrate that the tetrameric pore (S5-S6) is surrounded by four voltage sensor domains (S1-S4). One key question remains: how do voltage sensors (S4) regulate pore gating? Previous mutagenesis data obtained on the Kv channel KCNQ1 highlighted the critical role of specific residues in both the S4-S5 linker (S4S5(L)) and S6 C terminus (S6(T)). From these data, we hypothesized that S4S5(L) behaves like a ligand specifically interacting with S6(T) and stabilizing the closed state. To test this hypothesis, we designed plasmid-encoded peptides corresponding to portions of S4S5(L) and S6(T) of the voltage-gated potassium channel KCNQ1 and evaluated their effects on the channel activity in the presence and absence of the ancillary subunit KCNE1. We showed that S4S5(L) peptides inhibit KCNQ1, in a reversible and state-dependent manner. S4S5(L) peptides also inhibited a voltage-independent KCNQ1 mutant. This inhibition was competitively prevented by a peptide mimicking S6(T), consistent with S4S5(L) binding to S6(T). Val(254) in S4S5(L) is known to contact Leu(353) in S6(T) when the channel is closed, and mutations of these residues alter the coupling between the two regions. The same mutations introduced in peptides altered their effects, further confirming S4S5(L) binding to S6(T). Our results suggest a mechanistic model in which S4S5(L) acts as a voltage-dependent ligand bound to its receptor on S6 at rest. This interaction locks the channel in a closed state. Upon plasma membrane depolarization, S4 pulls S4S5(L) away from S6(T), allowing channel opening.


Assuntos
Condutividade Elétrica , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Membrana Celular/química , Membrana Celular/metabolismo , Chlorocebus aethiops , Ativação do Canal Iônico , Canal de Potássio KCNQ1/genética , Cinética , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese , Mutação , Fragmentos de Peptídeos/metabolismo , Porosidade , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
13.
J Biol Chem ; 284(8): 5250-6, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19114714

RESUMO

Mutations in the potassium channel KCNQ1 that determine retention of the mutated proteins in the endoplasmic reticulum (ER) are associated with the autosomal dominant negative Romano-Ward LQT1 cardiac syndrome. In the present study, we have analyzed the consequences and the potential molecular mechanisms involved in the ER retention of three Romano-Ward mutations located in KCNQ1 N terminus (Y111C, L114P, and P117L). We showed that the mutant KCNQ1 proteins exhibited reduced expression levels with respect to wild-type (WT)-KCNQ1. Radiolabeling pulse-chase experiments revealed that the lower expression levels did not result from reduced rate of synthesis. Instead, using a combination of Western blot and pulse-chase experiments, we showed that the mutant channel Y111C-KCNQ1, used as a model, was ubiquitinated and degraded in the proteasome more rapidly (t((1/2)) = 82 min) than WT-KCNQ1 channel (t((1/2)) = 113 min). On the other hand, KCNQ1 degradation did not appear to involve the GTP-dependent pathway. We also showed that KCNE1 stabilized both wild-type and Y111C proteins. To identify potential actors involved in KCNQ1 degradation, we studied the implication of the ER-resident protein Derlin-1 in KCNQ1 degradation. We showed that although KCNQ1 and Derlin-1 share the same molecular complex and co-immunoprecipitate when co-expressed in HEK293FT cells, Derlin-1 did not affect KCNQ1 steady state expression and degradation. These data were confirmed in T84 cells that express endogenous KCNQ1 and Derlin-1. Small interfering RNA knock-down of Derlin-1 did not modify KCNQ1 expression level, and no interaction between endogenous KCNQ1 and Derlin-1 could be detected.


Assuntos
Retículo Endoplasmático/metabolismo , Canal de Potássio KCNQ1/metabolismo , Proteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Complexo de Endopeptidases do Proteassoma/metabolismo , Síndrome de Romano-Ward/metabolismo , Substituição de Aminoácidos , Linhagem Celular , Retículo Endoplasmático/genética , Regulação da Expressão Gênica/genética , Guanosina Trifosfato/metabolismo , Humanos , Canal de Potássio KCNQ1/genética , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Complexo de Endopeptidases do Proteassoma/genética , RNA Interferente Pequeno , Síndrome de Romano-Ward/genética , Ubiquitinação/genética
14.
Am J Physiol Lung Cell Mol Physiol ; 292(5): L1085-94, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17237149

RESUMO

In cystic fibrosis (CF), the DeltaF508-CFTR anterograde trafficking from the endoplasmic reticulum to the plasma membrane is inefficient. New strategies for increasing the delivery of DeltaF508-CFTR to the apical membranes are thus pathophysiologically relevant targets to study for CF treatment. Recent studies have demonstrated that PDZ-containing proteins play an essential role in determining polarized plasma membrane expression of ionic transporters. In the present study we have hypothesized that the PDZ-containing protein NHE-RF1, which binds to the carboxy terminus of CFTR, rescues DeltaF508-CFTR expression in the apical membrane of epithelial cells. The plasmids encoding DeltaF508-CFTR and NHE-RF1 were intranuclearly injected in A549 or Madin-Darby canine kidney (MDCK) cells, and DeltaF508-CFTR channel activity was functionally assayed using SPQ fluorescent probe. Cells injected with DeltaF508-CFTR alone presented a low chloride channel activity, whereas its coexpression with NHE-RF1 significantly increased both the basal and forskolin-activated chloride conductances. This last effect was lost with DeltaF508-CFTR deleted of its 13 last amino acids or by injection of a specific NHE-RF1 antisense oligonucleotide, but not by NHE-RF1 sense oligonucleotide. Immunocytochemical analysis performed in MDCK cells transiently transfected with DeltaF508-CFTR further revealed that NHE-RF1 specifically determined the apical plasma membrane expression of DeltaF508-CFTR but not that of a trafficking defective mutant potassium channel (KCNQ1). These data demonstrate that the modulation of the expression level of CFTR protein partners, like NHE-RF1, can rescue DeltaF508-CFTR activity.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Fosfoproteínas/fisiologia , Mucosa Respiratória/fisiologia , Trocadores de Sódio-Hidrogênio/fisiologia , Animais , Linhagem Celular , Polaridade Celular , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Primers do DNA , Cães , Regulação da Expressão Gênica , Humanos , Rim , Fosfoproteínas/genética , Reação em Cadeia da Polimerase , Deleção de Sequência , Trocadores de Sódio-Hidrogênio/genética
15.
Circ Res ; 99(10): 1076-83, 2006 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-17053194

RESUMO

N-terminal mutations in the KCNQ1 channel are frequently linked to fatal arrhythmias in newborn children and adolescents but the cellular mechanisms involved in this dramatic issue remain, however, to be discovered. Here, we analyzed the trafficking of a series of N-terminal truncation mutants and identified a critical trafficking motif of KCNQ1. This determinant is located in the juxtamembranous region preceding the first transmembrane domain of the protein. Three mutations (Y111C, L114P and P117L) implicated in inherited Romano-Ward LQT1 syndrome, are embedded within this domain. Reexpression studies in both COS-7 cells and cardiomyocytes showed that the mutant proteins fail to exit the endoplasmic reticulum. KCNQ1 subunits harboring Y111C or L114P exert a dominant negative effect on the wild-type KCNQ1 subunit by preventing plasma membrane trafficking of heteromultimeric channels. The P117L mutation had a less pronounced effect on the trafficking of heteromultimeric channels but altered the kinetics of the current. Furthermore, we showed that the trafficking determinant in KCNQ1 is structurally and functionally conserved in other KCNQ channels and constitutes a critical trafficking determinant of the KCNQ channel family. Computed structural predictions correlated the potential structural changes introduced by the mutations with impaired protein trafficking. In conclusion, our studies unveiled a new role of the N-terminus of KCNQ channels in their trafficking and its implication in severe forms of LQT1 syndrome.


Assuntos
Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Adulto , Sequência de Aminoácidos , Animais , Células CHO , Células COS , Membrana Celular/metabolismo , Criança , Chlorocebus aethiops , Cricetinae , Retículo Endoplasmático/metabolismo , Feminino , Hemaglutininas/genética , Hemaglutininas/metabolismo , Humanos , Canal de Potássio KCNQ1/biossíntese , Camundongos , Dados de Sequência Molecular , Mutagênese , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Isoformas de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade , Transfecção
16.
Circ Res ; 96(7): 730-9, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15746441

RESUMO

Nearly a hundred different KCNQ1 mutations have been reported as leading to the cardiac long QT syndrome, characterized by prolonged QT interval, syncopes, and sudden death. We have previously shown that phosphatidylinositol-4,5-bisphosphate (PIP2) regulates the KCNQ1-KCNE1 complex. In the present study, we show that PIP2 affinity is reduced in three KCNQ1 mutant channels (R243H, R539W, and R555C) associated with the long QT syndrome. In giant excised patches, direct application of PIP2 on the cytoplasmic face of the three mutant channels counterbalances the loss of function. Reintroduction of a positive charge by application of methanethiosulfonate ethylammonium on the cytoplasmic face of R555C mutant channels also restores channel activity. The channel affinity for a soluble analog of PIP2 is decreased in the three mutant channels. By using a model that describes the KCNQ1-KCNE1 channel behavior and by fitting the relationship between the kinetics of deactivation and the current amplitude obtained in whole-cell experiments, we estimated the PIP2 binding and dissociation rates on wild-type and mutant channels. The dissociation rate of the three mutants was higher than for the wild-type channel, suggesting a decreased affinity for PIP2. PIP2 binding was magnesium-dependent, and the PIP2-dependent equilibrium constant in the absence of magnesium was higher with the wild-type than with the mutant channels. Altogether, our data suggest that a reduced PIP2 affinity of KCNQ1 mutants can lead to the long QT syndrome.


Assuntos
Síndrome do QT Longo/etiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Animais , Células COS , Metanossulfonato de Etila/análogos & derivados , Metanossulfonato de Etila/farmacologia , Humanos , Canais de Potássio KCNQ , Canal de Potássio KCNQ1 , Síndrome do QT Longo/metabolismo , Magnésio/farmacologia , Mutação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...